
[Vinoth et al., 3(4): April, 2014] ISSN: 2277-9655

 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

[3095-4001]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY

A Genetic Approach for Area Reduction in VLSI Layout
J.Allwyn Vinoth*1, K.Batri2

Department of Electronics and Communication, PSNA College of Engineering and Technology,

Dindigul, Tamil Nadu, India

allwyn.vinoth@gmail.com

Abstract
Very-large-scale-integration (VLSI) is defined as a technology that allows the construction and

interconnection of large numbers (millions) of transistors on a single integrated circuit. Integrated circuit is a collection

of one or more gates fabricated on a single silicon chip. The major objective in designing of VLSI integrated circuits

is overall chip area reduction. Genetic Algorithm is an iterative and evolutional approach that could be applied to

VLSI module placement problem. In this paper a Genetic Algorithm based approach is proposed to reduce the chip

area by means of effective placement of the modules. Major placement constraints are considered such that the

modules are placed based on best fit position values. As an idea to improve the result of final floor plan, a condition

is given such that the modules whose heights are greater than the width in their dimensions are rotated 90 degrees

(i.e.) the height is converted into width and the width into height. This yield an area optimized floor plan.

 Keywords: Floorplanning, Genetic Algorithm (GA), Integrated Circuit (IC) design, layout, macrocell, placement,

VLSI.

 Introduction
Nearly all the advances in the modern day

electronic systems and devices are a direct outcome of

VLSI technology. VLSI is defined as a technology that

allows the construction and interconnection of large

numbers (millions) of transistors on a single integrated

circuit. Integrated circuit is a collection of one or more

gates fabricated on a single silicon chip.

The designing of VLSI microchips is a

process of many successive steps that includes

specification, functional design, circuit design,

physical design, and fabrication. Macro-cell layout

generation is step in the physical design cycle.

 Due to complexity the circuit is partitioned

into sub circuits and the components are grouped in

as functional units, c a l l e d the macro-cells which

have to be placed on the chip. These cells a r e

described as rectangular blocks with terminals along

their borders.

 The positions of the cells and the information for

the routes of the interconnections between them are

defined by the layout. During placement it has to be

ensured that enough space is reserved for the completion

of all interconnections. In the routing phase, pins on the

border of the modules are to be connected. The final step

in the physical design is the compaction of the layout

where it is compressed in all dimensions such that the

total area is being reduced.

Related Works
Floorplanning is an important step in the

physical design of VLSI circuits to plan the relative

positions of a set of circuit modules on a chip so as to

optimize the circuit performance. In this step, it is

common that a designer may want to control the

positions of some the modules in the final packing due

various reasons. The designer may want to restrict the

separation between two modules if they have many

interconnections between them. This will also happen

in design re-use in which the designer will keep the

positions of some modules unchanged in the new

floorplan. The designers may also be interested in a

particular kind of placement constraint known to be

symmetry, and some recent literature on this problem

can be found from [1], [2]. However, an effective

method to control the absolute or relative positions of

the modules in floorplanning is non-trivial and this

inadequacy has also limited the application and

usefulness of many floorplanning algorithms in

practice.

 There are no universally accepted criteria for

measuring the quality of floor plans, possible criteria

are: [5]

 1. Minimize area 2. Minimize wirelength 3.

Maximum routability 4. Minimize delays or 5. A

combination of two or more of such criteria.

[Vinoth et al., 3(4): April, 2014] ISSN: 2277-9655

 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

[3095-4001]

 Several previous works have been carried out

to handle some particular kind of placement

constraints. The floor planners in [3], [5] and [4] can

handle preplaced constraint in which some modules

are fixed in position. They work on boundary

constraint, in which some of the modules are

constrained to be placed along one of the four sides of

the chip for I/O connection purpose. To demonstrate

the effects of an input set of infeasible constraints, an

experiment is performed in [1], where the required sets

of constraints were contradictory to each other. These

contradictory requirements will mostly lead to positive

cycles in the constraint graphs.

 Recently, there are some researches activities

are carried out in the direction of non-slicing floorplan.

Two methods, bound-slice line-grid (BSG) [5] and

sequence-pair (SP) [3], are being proposed. Those

methods are originally designed for the placement of

modules, which have no flexibility in the shape (hard

modules). The sequence-pair (SP) method is recently

extended to handle the soft modules [4]. In order to

handle soft modules, we need to solve an expensive

convex programming problem to determine the exact

shape of each soft module for numerous times, and this

may result in long runtime. For the same set of

benchmark data in [4], the slicing floorplan algorithm

in [2] and may obtain comparable results by using only

a fraction of the runtime. In fact, it may have less than

1% dead space, using no more than 7 s for all the test

problems. In floor plan, it is useful if the users are

allowed to specify some of their desired placement

constraints in the final packing. There are some

previous works on floorplanning with preplaced

modules [6]. A preplaced module is fixed in position,

height and width.

 The placement constraint consider in [2] is

called boundary constraint: some modules are

constrained to be packed on one of the four sides: on

the right, on the left, at the top, or at the bottom of the

final floor plan. This may be due to the reason that the

designers may want to place some modules along the

boundary for input-output connections. Other than

these, floorplanning is usually done in hierarchical

manner in which the modules are grouped into

different units and the floorplanning is done purely

independently for each unit of the chip. It will help, if

some of the modules are constrained to be packed

along the boundary of the unit such that they can abut

with some other modules in the neighboring units. In

[2] using the simulated annealing (SA) process, the

normalized Polish expression in each of the iteration

is checked to see either the boundary constraints are

satisfied. This can also be done efficiently in linear

time by just scanning the expression once. Then fix the

violated constraints as much as possible, and then

include it in the cost a boundary constraint term to

penalize the remaining violations.

 Slicing representations have some

advantages like smaller encoding cost and solution

space brings faster runtime for packing. Further it is

more flexible to deal with hard, pre-placed, soft and

rectilinear blocks. However in real designs, optimal

solution may not be in the solution space of the slicing

structure. While with non-slicing representation,

optimal solution might be achieved but it will need

more evaluating runtime for packing than slicing

approach. In [5] the number of feasible solutions for a

given stage of a floorplanning problem is very large.

Besides the great reduction in the search of a

floorplanning solution, the introduction of an objective

function will allow to select superior floor plans. More

over this will change the problem to an optimization

problem.

 In cluster growth-based method [6], the

floorplanning is carried out by iteratively adding the

blocks until all blocks have been assigned. An initial

block is chosen and is placed in the lower-left (else any

other) corner. Successive blocks are then added, one at

a time, and they are merged either vertically,

horizontally, or diagonally with the cluster. The

orientation and location of the next block, depends on

the current shape of the cluster and it will be placed to

the best position of the objective function of the

floorplan. In controversy to the floor plan-sizing

algorithm, only the different orientations of all the

individual blocks are taken into consideration.

Methods that may be used directly and simultaneously

to optimize both the shapes of each block and the floor

plan are not suitably known.

 The floor plan problem is said to be NP-

complete. Different heuristic approaches are taken to

solve this problem. Those approaches can be

categorized as Genetic Algorithm (GA), Simulated

Annealing (SA) and Hybrid approach (SAGA:

Simulated Annealing and Genetic Algorithm).Other

than these various other methods are also available.

These types of algorithm, searches through the

feasible solution space for better floor plan. Both

simulated annealing and genetic algorithm are

computation intensive. The difference is one that the

simulated annealing operates on only a single solution

at a time while genetic algorithm deals a large

population of solutions which are optimized

simultaneously. Thus the genetic algorithm takes the

advantage of the experience gained in the past

exploration of the solution space. Both the genetic

algorithm and simulated annealing have mechanisms

to avoid entrapment at local optima. In SA, this is

[Vinoth et al., 3(4): April, 2014] ISSN: 2277-9655

 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

[3095-4001]

accompanied by discarding a superior solution

occasionally and accepting the inferior one. The

genetic algorithm also relies on the inferior individuals

so as to avoid false optima. Since it deals with the

whole population of individuals, the genetic algorithm

can hold and process inferior individuals without

losing the best one. Simulated annealing is an

inherently serial algorithm while the GA can be

parallelized even on a loosely coupled distributed

computer network with 100% processor utilization.

 A solution is being described in [7], such that

incorporates a novel encoding system with a simple

GA. It utilizes an order-based representation that

encodes the rectangles and the binary operations into

a simple permutation of structures, and a decoder that

converts the permutation of structures into a

normalized postfix expression. The normalized postfix

expression representation is a non-redundant because

it provides a unique postfix representation for every

different slicing floor plan. If the postfix expressions

are not constrained by normalization, a single layout

can be expressed by very many equivalent postfix

expressions.

 Thus the genetic algorithm explores the space

of encodings rather than the solution space itself [8].

For continuous parameter optimization problems both

spaces are identically. A straightforward genotype

encoding in this case is a string of genes which are

simple floats. Each gene represents an element of the

vector decoding a point in the solution space. The

standard mutation operator randomly modifies single

genes and crossover is done by direct merging of two

genes strings which results in two offspring. All

offspring represent correct encodings and these

encodings define admissible solutions to the given

optimization problem because of the one to one

genotype to phenotype mapping between both spaces.

Problem Description
A circuit is laid out according to a set of

layout rules (or geometric design rules). The layout

rules may be in the form of minimum allowable values

for certain widths, distance of separations, and

overlaps. A circuit layout problem involves a

collection of cells (or modules). These modules may

be very simple elements (e.g. ., a transistor or a gate)

or may contain more complicated structures (e .g. a

multiplier).

Layout architecture refers to the way devices

are organized in the chip area. Different layout

architectures achieve different trade-offs among

speed, packaging density, fabrication time, cost, and

degree of automation. The fabrication technology for

these layout architectures is generally identical.

 The placement constraints may be relative or

absolute. The relative placement constraint defines the

relationship between two modules and an absolute

placement constraint describes the relationship

between a module and the chip. Three common types

of placement constraints are pre-placed constraint,

boundary constraint and range constraint.

 In pre-placed constraint, a specific block is

being placed exactly at a certain position in the final

packing. While on considering the boundary

constraint, a block is required to be placed along one

particular side of the final floorplan: on the left, on the

right, at the bottom, or at the top. For range constraint,

a module is needed to be placed within a given

rectangular region in the final packing.

 Here the inputs of placement problems being

specified, the main requirement is to find an optimal

layout for the given set of modules such that i) the

modules do not overlap and ii) the length of

interconnection used is minimal. The module has

defined length and width .For the purpose of simple

representation and manipulation, the modules

considered here are only rectangular shapes which use

the same grid structure.

Implementation Issues
During floorplanning the macro cells are

described by certain information. That information

includes their width, length and cell number. The main

objective of the proposed method is to plan all the cell

positions over a chip area.

Fig.1. Cell Definition

 The shape of a cell is defined as the lower

area bound of all possible rectangles of the cell. It is

expressed as the x and y dimensions of the rectangles.

If we assume that each rectangle can be extended in

either the x or y dimension by empty space, we get a

cell with one fixed shape. The cells are to be placed

such that non overlap constraints are satisfied and the

[Vinoth et al., 3(4): April, 2014] ISSN: 2277-9655

 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

[3095-4001]

area cost is minimized. Here the cell positions are

defined as the lower left corner of the cell.

A. Non-Overlapping Constraint

To place the modules over a minimum chip area,

they have to be placed adjacent to each other. On

placing so, the main issue to be considered is that the

modules do not get overlapped at any instance. So they

have to be separated by minimum distance to avoid

overlapping.

Fig.2.Seperate and Overlapped Modules

 The spacing could be utilized for routing in the final

layout.

B. Wire Length and Area Estimation

Wire length between two modules is calculated by

measuring the distances between centers of two

modules, which are connected by a forward path. The

overall wire length between the connected modules is

added to give the total wire length.

Wire Length (F) =∑i,j (cij * dij) ..(1)

 cij : connectivity between blocks i and j.

 dij : distances between the centers of

 rectangles of blocks i and j.

 Total chip area is the area of minimum

rectangle that encloses all the modules within itself.

Thus the area is expected to be minimum, satisfying

the main objective of reduced chip area. The total chip

area is calculated by the product of difference between

the maximum and minimum values of the x and y-axis.

Fig.3.Area Estimation

The total area is

Area (F) = {Max (xi+wi)-Min (xi)}*

 {Max (yi+hi)-Min (yi)} ... (2)

Genetic Layout Optimization
The performance of each Genetic Algorithm

depends on a set of control parameters like population

size, crossover and mutation rates.

A. Localization Algorithm

The initial localization algorithm used here

searches the partially covered grid for a free space,

where the next module could be placed. It starts at the

bottom left corner of the grid and moves the modules

top, till it either finds the available space or it reaches

the top of the grid.

 If an empty space is found, then the module

will be placed there. Otherwise the algorithm will

return the module to the bottom edge of the grid, shifts

to the adjacent position and tries to find the free space

for the placement. The search is carried out until any

legal position for the modules is found.

B. Cost Function and Fitness Function

VLSI floorplan is a minimization problem

whose objective is to minimize the cost of floorplan

F, i.e., Cost (F). Generally a floorplan has an area cost

and an interconnection cost. Here the area cost is

measured by the area of the smallest rectangle that

encloses all the modules and the interconnect cost is

the total length of the wires fulfilling the

interconnections between the modules. Thus the cost

of a floorplan F could be given by,

 Cost (F) =Area (F) +Wire length (F) ... (3)

 The fitness measures of each module relays

on maximal compactness of layouts and non-

overlapping of objects. The objective of reduced area

[Vinoth et al., 3(4): April, 2014] ISSN: 2277-9655

 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

[3095-4001]

is taken in the fitness value such that it is essential to

have bigger fitness for shorter layouts.

Thus the fitness of the individuals in the whole

population is taken by

 Fitness (F) = 1/Cost (F) … (4)

C. Genetic Operators

After the construction of the initial floor plan, the

genetic algorithm will start the optimization by

modifying the individuals (i.e. mutation) and by

combining the building blocks (i.e. crossover). The

main mutation operator modifies the location of the

modules over the floor plan area. The operator

exchanges the blocks which corresponds to

exchanging cells or partial layouts on the layout

surface. Here storing all important implementations

for the blocks will enhances the performance of the

genetic algorithm because for a moved partial layout a

different implementation may be better in its new

environment. Here the number of iterations is taken to

be 1000, which could be changed. The crossover rate

and the mutation rate may taken to be the number

equal to the number of modules to be place.

 The implementation of the crossover operator

is carried out by choosing two individuals randomly to

produce an offspring. Due to this, the number of

transmitted genes from the parents is smaller than for

problems where cross over directly leads to a correct

individual. The recombination operator, which is the

only means to generate new solutions, plays important

role in genetic algorithm. The basic idea behind such

operator it should be designed in order to allow any

useful inheritance.

 When designing a genetic algorithm for a

specific problem, it is very important that a global

optimum can be reached starting from any set of

individuals by the application of the genetic operators.

 The main goal is to order the modules in such

a way that the compact parts of the layout will refer to

the compact group of objects within the available

solution. This means that once some good-looking

solution sequence is found out from the population,

then it is hard to replace it with any other sequence

which seems to be less fit than the former one. The

process of evolution of the best solution can be found

as that it starts with competition among various

solutions to find the best beginning of the layout, and

then search gradually towards the end of the layout.

D. Algorithm Description

The steps of the detailed working of Genetic

Algorithm can be described as follows:

Step 1: Load modules data and the initial parameters

of the GA (such as generations, cross over & mutation

probabilities, etc.).

Step 2: Generate the initial population, initialize the

position of each module by initial placement and

calculate the floor plan area.

Step 3: Using the genetic operators and their genetic

probabilities, generate the next module floor plan

layout.

Step 4: Check each module for its best fitness position

and if its fitness is better than the initial fitness then

update it.

Step 5: Check the overall floor plan layout and

calculated the fitness using the equation (4), if its

fitness value is better than the population‘s value,

update it as optimal value.

Step 6: If termination condition is satisfied, the

algorithm stops and the inputs which gave optimal

fitness is given as output; otherwise, go to Step 3.

To improve the final module floor plan, for the

condition

 {

if (hi>wi), then

ti=hi;

hi=wi;

wi=ti;

 }

 Where hi & wi are height and width of the

corresponding module. Then carry out the algorithm

from step 3.

Generations 1000

Crossover Probability 0.5

Mutation Probability 0.1

Table1. Initial Parameters

Simulation Results
 The floor plan result has been observed and it is

shown in Fig.4 which is enclosed by a rectangle with

minimum area that contains all the modules.

In Fig.4.a, the initial placement of the modules is done

which is not an optimal one. Though the modules do

not overlap, it is not more area efficient.

[Vinoth et al., 3(4): April, 2014] ISSN: 2277-9655

 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

[3095-4001]

Fig.4.a. Initial Module Floorplan Layout

In Fig.4.b the final module floor plan layout

is achieved which is more area efficient than the initial

floor plan.

Fig.4.b.Final Module Floorplan Layout

As an idea to improve the result of final floor

plan, certain conditions were given such that the area

is further reduced which is considered to be near

optimal floor plan. According to it, the modules whose

heights are greater than the width in their dimensions

are rotated 90 degrees (i.e.) the height is converted into

width and the width into height. This yield an area

optimized floor plan and is shown in Fig.4.c.

Fig.4.c.Improved Final Module Floorplan Layout

Stage Estimated Area
Approximate

Wirelength

Initial Floorplan 2400 sq. u l 98 u l

Final Floorplan 621 sq .u l 50 u l

Improved Final

Floorplan
532 sq .u l 39 u l

Table 2.Floorplan Output

Conclusion
 Floorplanning is one of the process manually

crafted which results in time consumption and less

efficient. The problem of the floorplanning has been

considered as a problem of constraint optimization to

take care of non overlapping requirement. The concept

of GA has been used because it holds the advantages

like, simplicity, not much problem dependency and

efficient solution.

 The solution has been proposed to define the

floorplanning by means of genetic algorithm, always

there is a scope of having some improvement in the

solution. In this regard evolutionary programming can

be considered as one of the future possibility.

Evolutionary programming (EP) is most widely used

approach for optimization problems, which gives the

desirable results by using the given constraints to fetch

the optimal solution in a reasonable time even when

problem size increases.

References
[1] Mazumder P., Rudnick E., “Genetic

Algorithm for VLSI Design, Layout and

[Vinoth et al., 3(4): April, 2014] ISSN: 2277-9655

 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology

[3095-4001]

Automation” Addison-Wesley Longman

Singapore Pvt.Ltd., Singapore

[2] Sathiamoorthy S. and Andaljayalakshmi.G

“Hybrid Genetic Algorithm for VLSI Macro

Cell Layout” in proceedings of International

Workshop on Information Retrieval, June

2004, Madurai.

[3] Evangeline, F.Y. Young, Chris C.N.Chu, and

M.L. Ho “Placement Constraints in Floor

plan Design” IEEE transactions on VLSI

Systems, 2004.

[4] D. F. Wong, and Hannah H. Yang “Slicing

Floorplans with Boundary Constraints”

IEEE transactions on Computer- Aided

Design of Integrated Circuits and Systems,

Vol. 18, No. 9, September 1999.

[5] B Sowmya, Sunil MP “Minimization of

Floorplanning Area and Wire Length

Interconnection Using Particle Swarm

Optimization” International Journal of

Emerging Technology and Advanced

Engineering Volume 3, Issue 8, August 2013.

[6] Christine L. Valenzuela and Pearl Y. Wangy

“Layout Problem Optimization Using

Genetic Algorithms” in proceedings of the

third ICGA, Kaufmann publishers, pp. 133-

140, 1989

[7] Schnecke V., Vornberger O (1996) “An

Adaptive Parallel Genetic Algorithm for

VLSI Layout Optimization” 4th Int. Conf. on

Parallel Problem Solving from Nature

(PPSN IV), Berlin, Germany, September 22-

27, 1996.

[8] Heming Chan, P.Mazumeder and

K.Shahkoor “Macro cell and Module

Placement by Genetic Adaptive Search with

Bit Map-Represented Chromosome”

Elsevier Science Publishers Integration, the

VLSI journal 12 , p.p 49-77, 1991.

[9] Christine L. Valenzuela and Pearl Y. Wang

“A Genetic Algorithm for VLSI

Floorplanning” Department of Computer

Science , George Mason University, Fairfax,

USA. International Symposium on Physical

Design, 1998.

[10] Volker Schnecke Oliver Vornberger “A

Genetic Algorithm For VLSI Physical

Design Automation” Dept of Math

Computer Science, University of Osnabruck,

Dosnabruck Germany 3rd Conf. on Parallel

Problem Solving from Nature Springer

Lecture Notes in Computer Science 866,78-

87,1994.

[11] Xiao-Dong Wang, Tora Chen “ On

Performance and Area Optimization of VLSI

Systems Using Genetic Algorithm”Dept of

Electrical Engineering, Colorado State

University Ft Collins 1993.

[12] M.Sarrafzadeh and C.K.Wong “An

introduction to VLSI physical design” The

McGraw-Hill Companies, Inc . United States

of America.

[13] Sabhi H.Gerez”Algorithms for VLSI design

automation “JOHN WILEY & SONS

(ASIA)

